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AbstracL A modified hypemetted-chain theory is applied to calculate the static liquid smchxe 
fador for simple liquid met$$ during rapid cooling. With a proper choice of bridge function, 
it is found that this integralequation theory is capable of yielding a reasonably accurate liquid 
smcture factor in the supercoded liquid region. To exploit the usefulness of the o]culated liquid 
smcture, we combine these smcture data with modwampling theory to investigate the dynamics 
of the p-relaxation process. It is demonstrated in this work that the critical temperatures for M 
ideal glass Uansition predicted here for liquid metals Na and K are slightly lower than those 
determined previously by us using camputer-simulated structure factors. In particular, we show 
that the material-dependent exponent parameter A, which is used widely in the IiteraNre as a 
fining panmeter in the analysis of light scattering experiments, can be given more physical 
significance if one correlates fie change of A with F e  microscopic interaction of particles 
specifically for the liquid metal, Lennard-Jones fluid and hard-sphere s y s t e ~ .  The implications 
of the present results, and the possibiliiy of exuacting useful information for more complicated 
system, is discussed in the text 

1. Introduction 

The @-relaxation process for a glass-forming supercooled liquid is a subject of current 
interest. Empirically, this phenomenon was studied using different experimental probes. 
Dielectric loss spectroscopy is perhaps one of the earliest experiments that provides evidence 
for the existence of the 0-relaxation process. Such an experimental technique was applied 
extensively by Goldstein and Johari [l, 21 to understand the 0-resonances for a wide .class 
of rigid molecular substances and amorphous polymers. Specifically, they observed in their 
measured dielectric loss spectra a secondary absorption band. To explain its origin they 
proposed a potential energy barrier picture, comprising cooperative and hindered types of 
molecular rearrangements [3,4]. In an entirely different approach Knaak and co-workers [SI 
carried out an inelastic neutron scattering experiment for an ionic glass. This experiment 
focused on the scalins behaviour of B-resonances. The dynamics of the p-relaxation process 
was also investigated by Cummins and co-workers [&lo] for ionic and molecular glasses 
using Brillouin-scattering spectroscopy. This study was made feasible through an improved 
technique using the Sandercock tandem multipass Fahry-Pirot interferometer, which is an 
experimental setup specifically designed to circumvent the overlapping order problem. Their 
Brillouin spectra measurements for the dynamical structure factor exhibit a fractal law that 
varies as a-('-'), where a is an exponent parameter  to^ be defined below. In an attempt to 
look into the dynamical behaviour of a supercooled liquid, Pusey and Megen [ 1 I] prepared 
suspensions of small equal-size long-hours metastable spherical colloidal particles, and used 
a dynamical light scattering tool to investigate the structural and-dynamical properties of 
the system. Because of the unique way in which the colloidal system was prepared, the 
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interactions of the particles resembled that of a fluid of hard spheres, thus permitting a 
tractable theoretical analysis of the &relaxation process to be made. 

Theoretically, Goldstein /3] and Johari [4] attempted to interpret the @-relaxation process 
as originating from mobile clusters of atoms which, due to stringent atomic rearrangements, 
suffer the hindered type of motion for encaged atoms. However, such an idea has been 
questioned by Gotze and Sjogren [I21 as being physically unsound, since this latter feature 
has not been observed generally. In a series of works [12-191 Gotze, Sjogren and co- 
workers have studied the &relaxation process within the recently developed mode-coupling 
theory (MCT) of glass transitions. According to the latter works, the &phenomenon can be 
understood microscopically by examining the temporal and spatial changes of the normalized 
intermediate scattering function R(r, t ) .  Specifically, the MCT predicts the presence of three 
relaxation regimes for R(r, f): a microscopic relaxation time to - s corresponding 
to uncorrelated binary collisions such as those happening in an equilibrium liquid state: an 
intermediate mesoscopic time tp ,  typically of the order of 10-*-10-" s; and a long-lasting 
timescale r, - 1-103 s (the so-called a-relaxation). The ,%relaxation process belongs to 
the mesoscopic timescales. It can be shown in the MCT that near a critical temperature, Tc, 
the normalized density correlation function R(r, t )  exhibits a factorization property which 
expresses R(r, t )  in terms of a universal temporal scaling function uncorrelated with two 
material-dependent spatial functions. This factorization property was investigated first for a 
Lennard-Jones system [20], subsequently for a hard-sphere system [17,18,21], and recently 
for a lattice gas system [22]; Cummins and co-workers [6-10] have quantitatively examined 
this property for the ionic and molecular glasses. In this paper we intend to supplement 
these works for a metallic system. Our purpose in carrying out this calculation is threefold. 

First, we plan to perform a realistic calculation for the supercooled liquid metals Na 
and K by applying the modified hypemetted-chain integral-equation theory to the liquid 
structure. This recently proposed approach has been evaluated critically by us [23] to be 
highly reliable and accurate; it provides us with an additional channel of preparing an ideal 
monatomic glass which may serve the same pedagogical purpose as the computer-simulated 
monatomic glass. As the static liquid structure factor S ( q )  is the sole input to MCT this 
application is important, not only because it offers an alternative means of calculating T,; 
its comparison with Tc determined previously [24] using the molecular dynamics simulated 
S(q) further exploits the potential of the method to an undercooled liquid. Second, we 
intend to compare the scaling properties of the ,%relaxation process for the liquid metal, 
Lennard-Jones and hard-sphere systems. This comparison is instructive since it enables us 
to give more physical significance to the MCT exponent parameter h (to be defined below) 
which has been widely used merely as a fitting parameter in experiments on glass transitions. 
In particular, one can infer from the variation of h the microscopic interactions of more 
complex systems. Third, we shall calculate the tagged particle distribution function Ps(r, t ) .  
and see if P ( r ,  t )  for a metallic system can give any hint to the large discrepancies in this 
quantity between the hard-sphere and binary soft-sphere systems €181. 

The format of this paper is as follows. In the next section we briefly summarize the 
formulae used in the modified hypemetted-chain theory, and draw attention to a bridge 
function that we found to yield reasonable S(q). The interatomic potential used in the 
calculation is also outlined briefly. Section 3 is devoted to an introduction of mode-coupling 
theory. Here the non-linear integral equation which R(r, t )  satisfies will be introduced. The 
explicit or related expressions for the scaling formula R(r, t )  and for the distribution function 
Ps(r, t )  will be given in this same section. We discuss our numerical results in section 4 
and give a conclusion in section 5. 
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2. Static structure factor 

In this section we summarize essential formulae that appear in the modified hypemetted- 
chain theory and briefly outline the evaluation of S(q). 

The modified hypemetted-chain integral-equation begins with the Omstein-Zemike 
relation 

d(r) = c ( r )  + p  dr‘d(lr - T’I)c(r’) (1) s 
where p is the number density, c(r) is the direct correlation function, and d(r) = g ( r )  - 1 is 
the total correlation function, g ( r )  being the pair correlation function. To solve this equation 
one must supplement it with a closure. The most frequently used form is 

g ( r )  = e x p [ W  - c(r) - B@(d - BO)] (2) 

where fi  = ( k ~ T ) - l  is the inverse temperature, @(I) is the interatomic potential and B(r )  is 
the bridge function. Following our previous applications to liquid metals we construct the 
pair potential at each T using the modified generalized non-local model pseudopotential of 
Li and co-workers 12.51 and Wang and Lai [26]. According to the latter work #(r) can be 
written 

where GL(q)  is the normalized energy-wave-number characteristic with the Singwi and 
co-workers 1271 exchange-correlation factor included and Z& = Zz - p:, Z and pd being 
the nominal valence and depletion charges, respectively. It should be emphasized that in 
(3) proper attention has been given to the one-electron energy and pseudo-wavefunction 
by carefully incorporating higher-order perturbative corrections through a parameter in the 
bare-ion pseudopotential (see [E] for details). For the bridge function B(r )  we have chosen 
the empirical B(r)  of Malijevskf and Lab$ [ZS]: 

(4) 
(U1 + VZY)(Y - M Y  - v4)/wv4 o < Y < V 4  

AI~xP[-~s(Y - v4)lsinlAdy - % ) l / r  Y 2 v4 
m= [ 

with y = r/u - 1, U being the hard-sphere diameter, and the parameters A; and vi are 
determined, respectively, by continuity conditions and by fitting them to all known structural 
and thermodynamic computer simulation data of hard spheres over the entire fluid range 
up to the density of freezing. Equations (1)-(4) constitute a set of equations that are to 
be solved self-consistently for g( r ) .  The static structure factor S(q) is then obtained by 
Fourier transformation. 

3. Mode-coupling theory 

The original derivation of the non-linear self-consistent equations has been well documented 
in several papers by Gotze and Sjogren [29-321. Here we review the steps that are necessary 
for onr present purpose. 
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3.1. Basic formulae 

Central to the MCT is the density-density correlation function F(r, t )  = ( S ~ ( T ,  t)Sp(O,O)) 
where Sp(r,t) is the density fluctuation for the position vector r at time t ,  and (. . .) 
denotes the ensemble average. According to the MCT the normalized correlator R(q ,  z) = 
&q. z) /S(q)  satisfies 

S K L a i  and H C Chen 

. .. 

where m is the atomic mass and &(q, z) is the generalized iiictional term, or the so-called 
memory function. Here the Fourier-Laplace transform of a quantity O(q, t ) ,  denoted by a 
caret, is defined as 

m 

&q,z) = i s  dfeiz'O(q,t). ' (6) 
0 

Since we shall be concemed with the long-time behaviour, we make the approximation 
M ( q ,  f )  c r(q, t )  and ignore contributions from the transient part of M ( q ,  t ) ;  r(q. t )  has 
been derived previously by Sjogren I331 and Bengtzelius and co-workers [34] and is given 
bY 

2 

+ ;dc(q')  + c(q")l) S(q')S(q")R(q', O W ' ,  0. (7) 

On the basis of many-body methods and kinetic theory, Bengtzelius and co-workers [34] 
successfully derived a closed non-linear self-consistent dynamical equation for the 
solidification: 

In (8) the Debye-Waller form factor f ( q )  = R(q,  t -+ 03) and Fq(f(k)) is a functional of 
f ( k )  that appears in (7). Equations (7) and (8) are basic formulae, which have to be solved 
iteratively. 

A similar equation for a tagged particle exists, and it can be written [34] 

where 

In solving for fS(q) onerequires f ( q )  as input, but again it has to be solved self-consistently. 
We shall apply these equations in our calculation of the tagged particle motion. 
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3.2. The @-relaxation process 

Following the work of Gotze and Sjogren [30,32] we present in this subsection those 
equations in MCT which are essential for an analysis of the ,%relaxation process: The 
readers are referred to original papers [24,29-321 for technical details. 

According to Gotze and Sjogren [30,32] the correlator R ( q ,  t )  in the vicinity of Tc can 
be expressed in a factorized form: 

Here fJq )  is the Debye-Waller form factor, which is the solution of (7) and (8); 
h,(q) = [l-fc(q)]'l; is the critical amplitude [24], where 1; (fi) is the right-hand (left-hand) 
eigenvector of the stability matrix 

cqk = 11 - f ( k ) ~ ~ a ~ ~ / a f ( k ) .  (12) 

The term p2 = [E, ~Tc(a~9/aT),(k)]/(1-A), X being a material-dependent exponent 
parameter which can be calculated from (8) [24]: 

(13) 
1 

A = - @I - f ( k ' ) ~ ~ ~ a ~ ~ ~ / a f ( k ' ) a f ( k ' ' ) i ~ [ i ' - . f ( k " ) ~ ~ z ~ , z ~ , , .  
9,k8,Y' 

The term E = (Tc - T) /T ,  is the separation parameter, and g+(t/tp) is a scaling function 
which satisfies 

~ l + f ' ~ : ( f ) + X l i ~ ~ d r e ' ~ ~ g : ( r ) = O  (14) 

where f = wtp &d r = t / t p ,  both being rescaled variables. The plus and minus signs in 
g*(z/tg) refer to glassy E > 0 and liquid E < 0 sides of the critical Tc, respectively. Note 
that the rescaled time ip = t&'(1 - , X ) E ~ - ' / ( ~ )  where the exponent parameter a can be 
determined from (13) 

A = rz(i - a)/r(i  - 2a) ( 1 3  

in terms of the Gamma function r(x). 
In the same vein the tagged particle correlator can be shown to be 

F Y q ,  t) = f34) +~5(dP"g*(tltp) (16) 

where FS(q, t )  = (Sps(q, f)SpS(O, 0)). f:(q) is the LambMossbauer factor, being the 
solution of (9) and (IO), and h;(q) is given by [29] 

h:(q) = - f3dI2 C ~ 9 . k ' I a ~ , / a f ( k ) l h c ( k )  (17) 
k,Y 

in which ZY = (1 ~- c:)-' is an inverse matrix and Cir = [l - f(k)l2aT/af"(k) is the 
tagged particle stability matrix. The above equations constitute the s e n g  point for our 
discussion of the ,%relaxation process. 
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4. Numerical results and discussion 

We have applied (1)-(4) to obtain the static liquid structure factor for the liquid metals 
Na and K from near freezing point down to supercooled liquid temperatures. For a liquid 
metal these calculations pose great difficulty since the mass densities of liquid metals are 
a priori unknown. To circumvent this difficulty we resorted to our recently proposed 
method [24,35] and determined this physical quantity indirectly from the simulated Wendt- 
Abraham parameter [36]. We refer the interested reader to these works for further details. 
Now, given an atomic volume at each lower T, it is then a straightforward matter to evaluate 
S(q) [23,37,38]. The calculated S(q) are displayed in figure 1 and they are compared with 
those obtained from the molecular dynamics simulation. An immediate conclusion can be 
drawn from this comparison: it justifies our present choice of the modified hypernetted-chain 
theory to the calculation of S(4) for an undercooled liquid. 

To proceed further we input the above S(q) to (7) and (8) and iteratively solve for 
f(q). Subsequently, the obtained solution f ( 4 )  is used in conjunction with (9) and (IO) 
to solve iteratively for the non-ergodic form factor f S ( q ) .  The critical temperatures Tc 
obtained for the Na and .K liquid metals are T, = 211 K and 194.18K respectively. These 
temperatures are slightly lower than those determined previously using simulated S(q) (for 
Na, Tc = 215.78K for K, T, = 200.2K). The difference, apart from the numerical 
uncertainties inherent in the MD g ( r )  (see the discussion on p 4332 in [24]), can be 
understood to be partly due to the use of the short-range hard-sphere bridge function (to be 
compared with a metallic B(r )  to which corresponds the MD-based g ( r ) )  which generally 
yields a slightly different structure in the second maximum of S(q) (see figure 3(a) in 1231). 
In the following, we present and discuss some interesting results. 

Table 1. The parameten A and a calculated from the present work, and the chanrteristic time 
to scaled by the microscopic time to for the liquid metals Na and K compared with those of the 
hard-sphere (HS) calculated using the Malijevskjr and Lab& [ZS] bridge function at the critical 
packing ratio 0.5324 and the Lennard-Jones (U) I201 systems. 
~~ 

System A n to/ro 10-4 

HS 0.772 0294 6.16 
U 0.714 0.321 - 
Na 0.712 0.322 - 
K 0.710 0.323 20.71 

4.1. Exponent parameter A 

Using (13) we have calculated the exponent parameter h and hence the parameter a from 
(15). These exponent parameters are given in table 1 along with those corresponding to 
the HS calculated using the empirical B ( r )  given by (4) and the Lennard-Jones [20] system. 
A notable feature in this table is that h shows a systematic change; it decreases from a 
large value of 0.772t for hard spheres (characterized by a purely infinite repulsive part), 
to a value of 0.714 for a Lennard-Jones system (delineated by a still highly repulsive part 
but a weakly attractive part), and to values of 0.712 and 0.710 for liquid metals (described 

t This A is larger than 0.758 obtained previously [211 using the Verlet-WeisHendenon-Gru?dke [39.40] smcture 
factor. Tbe discrepmcy l i s  in the presently employed S(q) which was demonstrated by Lab& and Uzijewkf [41] 
to be a more accurate description of the hard-sphere system (see figure 1 in this reference). 
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by a relatively softer repulsive part followed by an oscillatory weakly attractive part). This 
variation of A is surely intimately related to the details of microscopic interactions. In fact, 
it is possible to infer from this change of A that for a simple monatomic system such as 
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the one-component plasma (having a much softer repulsive part and a zero attractive part), 
it will be expected to have an exponent parameter that lies within the range 0.772 > A 
0.714. This prediction is based on the assumption that the attractive part of the pair potential 
does play some role in the dynamics of liquid structure, and that the Lennard-Jones system 
has a sufficiently weak attractive tail. It would be interesting to carry out such a calculation 
to check this conjecture. 

S KLai  and H C Chen 
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Figure 2. Master function &(7) againsl i = tftp for the hard-sphere system (full CUNe) and 
liquid metals Na (light broken curve) and K (heavy broken curve). 

4.2. Masterfunction for the @-relaxation 

From the A given above, it is numerically straightforward to calculate the master functions 
g+(s) [16]t. They are given in figure 2 for the hard-sphere (HS) and liquid metals Na and K. 
However, the calculated results are equally instructive if they are expressed in their Laplace 
transform &(z). For real frequencies w,  z 4 o + io, one obtains 

g+(t)cos(wt) dt - g+(r)sin(wt) dt = iz!(o) - &(U) 

t In consulting [I61 for the numerical trealntent of the singular part, care must be exercised in directly applying 
the algorithm. especially on p 8489. 
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Figure 3. Susceptibility spectra ~''(0) against D = o/op (where 00 = 1/16) for the hard- 
sphere system (full curve) and liquid metals Na (light broken curve) and K (heavy broken 
curve). 

and the corresponding susceptibility spectra x*(o) can be calculated from X+(W) = w&(o). 
The xz(w) for liquid metals Na and K are depicted in figure 3, together with that for the 
HS system included for comparison. It 'is interesting to note the following discernible 
differences. 

(i) For a given E,  the master function g*(r) for a metallic system varies more steeply 
with r for 5 <<I and r >I compared with that for hard-spheres. 

(ii) The susceptibility spectra x!(o) for the HS system has a broader dispersion relative 
to those of liquid metals Na and K. 

These two points, the validity of one which implies the validity of the other, can be 
understood qualitatively by examining the details of interactions between, particles. For 
HS we note that the microscopic interaction is purely geometrical, being chamcterized by 
an infinite repulsive potential. The shctural behaviour is therefore determined solely by 
the excluded volume effect. On the other hand, the microscopic interaction of a liquid 
metal is described by a relatively soft finite repulsive force embellished by an oscillatory 
weakly attractive part. Thus the structural behaviour is determined both by the geometrical 
factor, similar in nature to that of a HS system, and by an additional Coulomb attraction 
due to the presence of valence electrons. When the temperature (density) of an equilibrium 
liquid is rapidly decreased (increased) it is anticipated that the non-linear coupling between 
particles is enhanced by the attractive force that prevails in a metallic system. Since the 
@-relaxation process is believed to be a localized excitation, describing particles moving 
dynamically with their surrounding cages, such an enhancement in the attractive interaction 
with decreasing temperature (or increasing density) h& the consequence of making more 
robust the occurrence of the @-relaxation process, as evidenced by a longer characteristic 
c time scale t8 for the liquid metal than for the Hs system (see table I). This would imply 
that the atomic motion in its associated cage is relatively more stable for a metallic atom 
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I . , ' ' '  I 

rlo 
Figure 4. Tagged particle disaibution function P?(r) for (a) hard spheres and (6) the potassium 
element evaluated at q / t p  = 5 x (full curve), 5 x lo-' (dotted curve), 5 x IO-' (shoridash 
broken curie), 5 x IOo (long-dash broken curve), and 5 x 10' (chain curie) for the 8 < 0 liquid 
region. 

than for a HS particle. We will see more clearly such a picture below, when we discuss the 
tagged particle distribution function. 

Before proceeding to the latter discussion, we should mention one interesting aspect 
of figure 3. This figure reminds us of recent theoretical fittings of the MCT to light 
scattering experiments on C%,~KO.~(NO~)I .~ [8-101. There, the fitted values h = 0.81- 
0.85 surely imply that the details of inter-particle interactions should differ considerably 
from the presently considered monatomic systems. Indeed, for this particular fragile glass, 
which consists of argon-like ions K+ and Ca+, and optically anisotropic ions (NO&, it is 
believed that the orientational motion of the planar (NO$ is probably the most relevant 
cause of the distinctly large value of A. 

4.3. Tagged particle distribution functwn 
We turn now to a discussion of the tagged particle distribution function Ps(r, t) = 
4nr2FS(r, t), which can be obtained from (16) by a back Fourier transformation. This 
equation, which is 
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ric 
Figure 5. Tagged particle dishibution function Pi(,) for (a) hard spheres and (b) the potassium 
element evaluated at r, f t p  = (full curve), IO-L (doaed curve). and IOo (broken curve) for 
the E > 0 glassy region. 

describes the probability density of locating a tagged particle at time t and position r ,  if it 
was found to appear at the origin T = 0 at t = 0. Figures 4 and 5 display the P$(r, s = t / t g )  
against r/u for the liquid metal K and HS system calculated using the g - ( r )  and g+(r)  
respectively. (The result for the liquid metal Na is virtually the same and is therefore not 
given here). There are two interesting points that merit emphasis. 

(i) For a given E < 0, the HS tagged, particle PS(r,  r )  at different r intercepts at 
r/u = 0.172 (for K, r/u = 0.211). Since the probability of finding the HS tagged particle 
is higher for increasing t for r /u  > 0.172 (for K, r/u > 0.211). the HS tagged particle is 
seen to push its way through the cage of neighbouring particles. Such a picture for atomic 
motion in a cluster of paaicles appears to persist longer for a metallic atom than for a HS 
particle. 

(ii) For a given E > 0, the tagged particle P'(r ,~t)  at different t displays the 
characteristic localized motion and shows a slightly more stable configuration for metallic 
particles than HS particles. 

The first point can be explained by referring to the master function given in figure 2. 
There we see that the metallic g-(s) lies above that of HS throughout the time window of the 
.&relaxation process. Further evidence for this difference in the diffusive motion can also 
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Table 2. Tagsed paRick distribution function Ps(rm,, r;) evaluated at Ihe maximum position 
r,, for r; = t;/rp = 5 x where i = 0. , . . ,4 for the HS and liquid metal K in the E c 
0 liquid region. In the E > 0 glassy region r;+4 = r;+4/1p = where 1 = I , .  . . ,3 .  

IO TI rz r3 r4 rs r6 rr 
HS system 

PS(rma,q) 6.876 6.181 5.751 5.309 5.044 6.804 6.379 6.289 

K system 
rmaP 0.152 0.157 0.159 0.164 0.187 0.152 0.157 0.159 
P'(rmu, r ; )  5.582 5.252 5.066 4.867 4.409 5.507 , 5.289 5.229 

r m d u  0.120 0.126 0.132 0.144 0.184 0.120 0.124 0.125 

-6.0' ' ' " ' ' 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

rlo 
Figure 6. Spatial functions H:(r) and pi(r)  for the tagged particle distribution for the hard- 
sphere system (full curve) and liquid metal K (broken curve). 

be gleaned from table 2, where we give the Ps(rm. 5 )  at the maximum position rmar for 
increasing 5. As regards the second point, it can be attributed physically to the attractive part 
of $(I) being more important when the system is at a lower (higher) temperature (density). 

Finally, it is of great theoretical interest to compare our calculated monatomic metallic 
H,"(r) with that of the computer simulated sofi-sphere mixture (see figure 1 in 1181). Our 
metallic Hf(r) shows the same peak-valley behaviour as that of HS. Quantitatively, however, 
the magnitude of the first peak is lower and the whole curye is shifted to larger r-values 
(see figure 6). This latter feature is qualitatively similar to the soft-sphere mixture and 
may be attributed to the more realistic repulsiveness of $(r) .  A comparison between the 
present result for K and the soft-sphere mixture further implies that the single-peak feature, 
followed by an extensive spatial H,(r) for the latter, might be due to the size effect of 
different soft spheres. 

5. Conclusion 

In this paper we first examined the appropriateness of the modified hypernetted-chain theory 
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when applied to the evaluation of the static liquid structure factor for an undercooled liquid. 
We compared the calculated liquid structure factor with MD simulated S(q) and found 
that they agree very well for the supercooled liquid region of interest in this work. This 
prompted us to apply the calculated S(4) in conjunction with mode-coupling 'theory to 
study the ,%relaxation process. We chose liquid metal as a prototype system, since it is 
described by the simplest realistic interactions which, when compared with the HS and 
Lennard-Jones systems, permits extraction of fruitful information about ihe supercooled 
liquid dynamics. It was further attempted in this work to establish the connection between 
the details of microscopic interactions and the parameters that appear in mode-coupling 
theory. For simple monatomic systems, we found that the strength of the attractive part of 
the pair potential (i) varies inversely with the A parameter and (ii) makes more robust the 
occurrence of ,+relaxation process, and hence bas the tendency of stabilizing the motion of 
the tagged particle in its neighbourhood. 
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